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A B S T R A C T

Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health
worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to
dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick
resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs
associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly al-
ternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These
premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins hav-
ing been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The
growing interaction between domestic pets and people underscores the importance of developing new tick con-
trol measures that require effective screening platforms applied to vaccine development. However, as reviewed
in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine
approach. The control of tick infestations and pathogen transmission could be obtained through immunization
programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects hu-
man and animal health on a global scale.

1. Introduction

Globally, ticks are the most important arthropod vectors, transmit-
ting a wider variety of pathogens than any other group of vectors
(Jongejan and Uilenberg, 2004; Anderson et al., 2017). Tick infes-
tation remains a serious impediment to profitable livestock production
(Grisi et al., 2014; Laing et al., 2018; Rodríguez-Hidalgo et al.,
2017) while, at the same time, presenting an opportunity for the domes-
tic pet market (Coles and Dryden, 2014).

The development and application of tick control vaccines should be
seen as a sustainable measure, reducing the use of acaricides. These
premises emphasize the need to develop improved vaccines using dif

ferent strategies (de la Fuente and Merino, 2013). The primary mech-
anism behind the vaccine action is the fact that ectoparasites feeding on
immunized hosts ingest specific antibodies that attach to essential pro-
teins, thus inducing impaired feeding, interfering in both the life and re-
productive cycles, and resulting in lower vector numbers (de la Fuente
et al., 2011; Moreno-Cid et al., 2013; Bensaci et al., 2012; Merino
et al., 2011). The discovery of new vaccine antigen candidates for the
control of tick infestations requires the development of screening plat-
forms that allow for effective trials of suitable candidates (de la Fuente
and Merino, 2013). Ideally, vaccination could confer cross-protection
against a number of tick species considering the existence of protein
antigens that are largely conserved across tick genera (Perez-Perez et
al., 2010).
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The most common approach to tick control is through the use of aca-
ricides that combine good efficacy with low cost, yet they frequently
lead to: (i) selection of acaricide-resistant tick populations (Heath and
Levot, 2014; Rodríguez-Hidalgo et al., 2017; Webster et al., 2015),
(ii) health risks to animals and humans (Banumathi et al., 2017; Ku-
mar et al., 2005), and (iii) chemical contamination of the environment
(George et al., 2004; Graf et al., 2004). Taken together, the down-
side of using acaricides highlights the need to develop new control al-
ternatives (Rodríguez-Mallon et al., 2012; Sabadin et al., 2017).
A vaccine-based control is a promising approach presented as a cost ef-
fective and environmentally friendly alternative (de la Fuente et al.,
2007; Sonenshine, 2006). Although vaccination is considered a ratio-
nal strategy for controlling ticks, the veterinary market lacks available
products (White and Gaff, 2018). With that in mind, the pipeline of
universal vaccine development could be based on inducing cross-reac-
tive immunity against different tick species by devising a formulation
with conserved, antigenic proteins. Over the past three decades, a grow-
ing number of tick proteins have been evaluated as vaccine candidates.
As such, the aim of this review is to summarize the leading candidates
for tick vaccines, plus identify and describe new improved vaccines for
vector and pathogen control.

2. Pathogens transmitted by Rhipicephalus sanguineus sensu lato

There is growing concern over emerging and reemerging tick species
in many parts of the world (Kean and Irvine, 2013; Mlera and
Bloom, 2018; Ocampo et al., 2003). Tick infestation in dogs can
be an occasional nuisance or even a continuous infestation covering a
broad clinical spectrum, ranging from adverse effects on health to fa-
tal diseases (García-García et al., 2010; Weinberger et al., 2010).
The increased spread of arthropod vectors and their diseases can be ex-
plained by ecological and climatic factors, as well as by the mobility
of human and animal populations (Anderson et al., 2017). In this
context, R. sanguineus s.l. has been implicated as a vector of human
pathogens in Europe, Asia, and Africa. This species complex serves as
a vector of the human pathogen Rickettsia conorii, the causative agent
of Mediterranean spotted fever, and in North America as a vector of
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever
(Stafford et al., 2017; Parola et al., 2005; Wikswo et al., 2007).
Brown dog ticks infected with R. rickettsii have been recovered in Ari-
zona where an outbreak of the disease had occurred (Stafford et al.,
2017). Rocky Mountain spotted fever is among the most lethal diseases
in Mexico (Álvarez-Hernández et al., 2017), Brazil (Campos et al.,
2020), and other countries (Warner and Marsh, 2002). Importantly,
Dermacentor andersoni and Dermacentor variabilis are the main vectors
of R. rickettsii in North America (Burfdorfer 1975; (McDade and New-
house, 1986) ), which has since spread to Argentina (Paddock et al.,
2008). In addition, ticks belonging to the Amblyomma and Rhipicephalus
genera have been reported as vectors of this pathogen (Demma et al.,
2005, Labruna et al., , 2008, Parola et al., 2013).

The disease was first described in the early 1940s by scientists who
carefully documented specific environmental determinants that were re-
sponsible for devastating outbreaks in several communities. These re-
searchers discussed the basic role of domestic dogs and R. sanguineus
s.l. as the principal driving force of the epidemic. Years later, under the
same environmental conditions, the disease reappeared early this cen-
tury (Álvarez-Hernández et al., 2017). Specific ecological and epi-
demiological circumstances can trigger and perpetuate epidemic levels
of disease, as exemplified by recent outbreaks in the southern and east-
ern regions of the state of Arizona, caused by an increase in the numbers
of free-roaming dogs and host-seeking R. sanguineus s.l. in low-income
communities (Regan et al., 2015; Drexler et al., 2015; Demma et
al., 2005).

Hepatozoon canis is an important tick-borne infection in dogs
(Baneth, 2011). In North America, another species of this parasite, He

patozoon americanum, also causes disease in dogs (Vincent-Johnson et
al., 1997). Moreover, the bacterial family Anaplasmataceae contains
several species that infect horses, ruminants, humans, and dogs, in addi-
tion to wild animals such as Odocoileus virginianus and coyotes (Dumler
et al., 2001). In Europe, the main causative agent is Anaplasma phago-
cytophilum (Nováková and Víchová, 2010). Other species belonging
to Anaplasmataceae have also been found in Romanian dogs, such as
A. platys (Andersson et al., 2013) and Ehrlichia canis (Mircean et
al., 2012). The tick-borne bacterium Candidatus Neoehrlichia mikuren-
sis has been detected in several mammalian species, including humans
(Francischetti et al., 2011; Grankvist et al., 2014; Welinder-Ols-
son et al., 2010). Babesia canis and Babesia vogeli, in Brazil and Cuba,
are the main pathogens transmitted by R. sanguineus s.l. to dogs, and E.
canis, causing the so-called "Tick disease" (Castro et al., 2020; Navar-
rete et al., 2016; Silveira et al., 2009).

3. Tick control strategies based on acaricide products

Tick control is primarily based on chemical means, with topical
treatments having become the standard accepted method of application
(Dryden and Payne, 2004; Rust and Dryden, 1997). The chem-
icals used in the treatment of ectoparasites act systemically through
direct contact with the target parasites following external application
(Rodríguez-Vivas et al., 2014). Spot-on formulations and oral med-
ication provide ease of use and a longer dosing interval (usually
monthly), which may aid in preventing pathogen transmission to dogs
and their owners (Davoust et al., 2003; Welinder-Olsson et al.,
2010). Chemical classes include a variety of products such as chlori-
nated hydrocarbons (e.g., DDT and lindane), organophosphorus com-
pounds (e.g., coumaphos), carbamates (e.g., carbaryl), formamidines
(e.g., amitraz), pyrethroids (e.g., permethrin, flumethrin), formamidines
(e.g., amitraz), macrocyclic lactones (e.g., ivermectin), phenylpyrazoles
(e.g., fipronil), insect growth regulators (e.g., fluazuron), and isoxazo-
lines (e.g., afoxalaner, fluralaner, sarolaner), which are neurotoxins and,
therefore, directly affect the ectoparasite’s nervous system (Benavides
et al., 2006; Fernández-Salas et al., 2019; Heath and Levot, 2014;
Sharma et al., 2012; Webster et al., 2015).

Traditional control methods, such as acaricides and repellents and
educational campaigns on recommended practices to reduce exposure
to ticks, have been partially successful, with drug resistance and cont-
amination constituting important limitations (Kunz and Kemp, 1994;
Stutzer et al., 2018). Despite the variety of acaricide products on the
market, ticks remain an ongoing problem for pet owners (McTier et al.,
2016) because of their resistance and high number of generations per
year, resulting in a great number of offspring.

The resistance process is usually slow as resistant tick specimens ap-
pear in small numbers in the population (Nath et al., 2018). How-
ever, continued use of acaricides eliminated sensitive individuals and
the resistant population appears (Guerrero et al., 2014; Wang et al.,
2015). In addition, the susceptibility of populations may diminish with
prolonged exposure to individual products (de la Fuente et al., 2017).
When these products used at the recommended product concentration
and in accordance with all other recommendations over a long period
of time, a selection of resistant genes initially present in low numbers in
populations can dominate, resulting in a high resistance profile (Mans-
field et al., 2017; de la Fuente and Kocan, 2014).

Unfortunately, such resistance has developed in most countries that
are endemic for vector-borne diseases (Banumathi et al., 2017). The
arachnid’s genetic background and the indiscriminate use of chemical
products have largely contributed to the selection of resistant arthro-
pods, thereby threatening the success of disease control programs
(David et al., 2016; Nkya et al., 2013). Due to increased resistance
and the spread of infectious ticks to new areas (Djouaka et al., 2008;
White and Gaff, 2018), new control strategies are required.
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Since then, leading research on tick vaccines has discovered new
protective antigens using different methodological approaches in var-
ious tick species (Contreras et al., 2019) and in other ectoparasite
vectors (Bartley et al., 2017). It has always been considered that the
combination of vaccination with other control measures, such as insecti-
cides/acaricides and repellents, is needed for the effective control of ec-
toparasite vectors (de la Fuente, 2018), including dog ticks. Therefore,
preventive measures could be adopted, such as restricting dog contact
with ticks in endemic areas, applying long-acting tick products to dogs,
and tick treatments in the environment (kennel and adjacent facilities).
These products should be reapplied according to the recommended ef-
fectiveness periods.

4. General aspects for tick vaccine

Globally, most of the vaccines available to treat tick-borne diseases
are live (attenuated or blood-derived) (Marcelino et al., 2012). Al-
though these vaccines can be effective, little is known about their mech-
anism of action (dos Santos et al., 2014). Thus, additional research is
needed for the development of safe, more cost-effective, and better de-
fined alternative formulations (Guerrero et al., 2014; Marcelino et
al., 2012).

The feasibility of controlling tick infestations by immunizing the
hosts with selected tick antigens has already been achieved, resulting in
reduced infestations (de la Fuente et al., 2017) and allowing the in-
clusion of multiple antigens. This approach could target a broad range
of tick species and prevent tick-borne pathogens (de la Fuente et al.,
2007). Another challenge is the maintenance of high antibody titers in
vaccinated individuals due to the lack of natural immunological boost-
ing, given that most of the proposed antigens are normally found in
proteins that are not in contact with the host during the vector blood
meal (Coutinho-Abreu and Ramalho-Ortigao, 2010; Neelakanta
and Sultana, 2015). According to Elvin and Kemp (1994), candidate
antigens need to present important criteria in order to develop an effec-
tive vaccine, such as host-induced antibodies capable of acceding suffi-
cient target proteins, an antibody-antigen complex formation capable of
disrupting the function of the target protein, and/or inducing physiolog-
ical modifications affecting the vector.

Advances made in the characterization of tick genomes, along with
the use of bioinformatics, ribonucleic acid interference (RNAi), mutage-
nesis, immunomapping, transcriptomics, proteomics, expression library
immunization, and other technologies have allowed a rapid, systematic,
and comprehensive approach to a tick vaccine discovery (de la Fuente
and Kocan, 2003; Graf et al., 2004; Mctier et al., 2016). Compu-
tational approaches and tick-borne pathogen genomics have furthered
our understanding of the genetic factors and molecular pathways in-
volved at the host-vector-pathogen interface that could be used to iden-
tify signaling pathways and protein interaction networks, resulting in
a better comprehension of molecular and biochemical processes at the
tick-host-pathogen interface (Busby et al., 2012; de la Fuente et al.,
2017).

Recent developments in omics analyses of ticks and tick-borne
pathogens, coupled with the application of systems biology to the study
of tick-host-pathogen molecular interactions, have advanced our un-
derstanding of the genetic factors and molecular pathways involved at
the tick-host, tick-pathogen, and host-pathogen interface (Galindo and
de la Fuente, 2012; de la Fuente et al., 2017). de la Fuente
and Merino (2013), and Galindo and de la Fuente et al. (2012)
described a vaccinomics approach based on transcriptomics and pro-
teomics data. These authors studied a combination with vaccination tri-
als for the discovery of tick protective antigens for the control of Ixodes
ricinus and Dermacentor reticulatus infestations of companion animals
(dogs and rabbits) with adult salivary glands. The experiments resulted
in the identification of new antigens that exhibited a protective efficacy
of vaccination against I. ricinus and D. reticulatus infestations. However,

the information available in tick genomic, transcriptomic, and pro-
teomic databases, together with the fact that most of the annotations
are based on sequence identification and not on functional studies, re-
quires validation of the results after data integration and analysis (de
la Fuente and Merino, 2013). An important consideration for arthro-
pod vector vaccines in general is the need to find antigens capable of
protecting against different vector species and interfering with pathogen
infection and transmission.

One effective antigen against ticks is the protein Bm86, specifically
targeting the cattle tick Rhipicephalus microplus, which is the basis of two
commercial vaccines: TickGARD® (Queensland Dairyfarmes Oraganiza-
tion, Australia) (Jonsson et al., 2000), Gavac® (Heber Biotec S.A.)
(de la Fuente et al., 2007) and the recently released Ixovac® (Lapisa
S.A). The most significant effect was the reduction of larval infestations
in subsequent generations by reducing the number of engorged female
ticks, their weight, and reproductive capacity (de la Fuente et al.,
2011; Marcelino et al., 2012; Sonenshine, 2006). Although it has
proven to be a cost-effective alternative for the control of cattle tick in-
festations and pathogen infection (de la Fuente et al., 2007), there
are some limitations associated with the Bm86 vaccine, such as its lim-
ited efficacy against Rhipicephalus species, hence reinforcing the need for
new vaccines (de la Fuente and Kocan, 2003; Sonenshine, 2006).

5. Vaccine trials to analyze the efficacy against Rhipicephalus ticks

Szabó and Bechara (1995) used the principle described by Allen
and Humphreys (1979) (Fig. 1) in order to control R. sanguineus s.l.
infestations in dogs vaccinated with an extract gut proteins from R. san-
guineus s.l. It was observed in dogs immunized with gut extract that
some ticks did not oviposit and, after death, they turned black and ac-
quired a hard consistency (Szabó and Bechara, 1995). Notably, the
reduction in tick oviposition is one of the most important benefits ob-
tained with tick vaccines that lead to a reduction of tick populations in
the field (de la Fuente and Kocan, 2003; Moreno-Cid et al., 2013;
Sonenshine, 2006).

The efficacy of Bm86 antigen against R. sanguineus s.l. has been in-
vestigated by (Perez-Perez et al., 2010) (Fig. 1). After Bm86 immu-
nization in dogs, a reduction in the recovery rates of larvae (38 %),
nymphs (29 %), and adult females (31 %) was observed after tick blood
meal by Perez-Perez et al. (2010). The efficiency rate analysis of con-
version to eggs revealed distinct mean values for the control (56.2 %)
and vaccinated (46.4 %) groups. In addition, a preliminary experiment
with R. sanguineus s.l. demonstrated a synergistic effect of subolesin and
Bm86 knockdown (de la Fuente et al., 2006), suggesting the possibil-
ity of combining these antigens to improve the control of dog tick infes-
tations.

Novel proteins that are structurally homologous to Bm86 were re-
ported (Nijhof et al., 2010) as the synthetic peptide from the ATAQ
protein, which is present in the gut and Malpighi tubes of R. microplus
(Aguirre et al., 2016). The ATAQ proteins were isolated, character-
ized, and sequenced from several species of the Rhipicephalus genus, pre-
senting 93.3 % similarity among the ATAQ DNA. These data supported
new vaccine trials using mice, rabbits, and cattle to evaluate the hu-
moral immune response and efficacy against R. sanguineus s.l. and R. mi-
croplus. Furthermore, a 35 % reduction in overall life cycle parameters
was reported for R. microplus and 47 % for R. sanguineus s.l. (Aguirre et
al., 2016).

The efficacy of a 20 amino acid synthetic peptide from ribosomal
protein P0 from Rhipicephalus sp. ticks was assayed as a vaccine against
R. sanguineus s.l. in rabbits (Rodríguez-Mallon et al., 2012) (Fig. 1).
The overall efficacy was 90 %, demonstrating that immunization with
the tick peptide from P0 protein reduced tick survival, suggesting its ap-
plication as an effective tick control approach.
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Fig. 1. Timeline in the tick vaccine development.

Glutathione S-transferases (GSTs) can be found in most animals
(Agianian et al., 2003), and several tick GSTs have also been charac-
terized (He et al., 1999; de Lima et al., 2002; Junior et al., 2004)
as being involved in the metabolic detoxification of xenobiotics and
other endogenous compounds (Agianian et al., 2003). Sabadin et al.
(2017) investigated the effect of recombinant glutathione S-transferase
(Fig. 1) from Haemaphysalis longicornis tick (rGST-HI) vaccine against
Rhipicephalus appendiculatus and R. sanguineus s.l. infestation in rabbits.
The rGST-HI antigens triggered high antibody production, leading to a
reduction in the number, weight, and fertility of engorged R. appendicu-
latus adults and an overall vaccine efficacy of 67 %. Interestingly, histo-
logical analysis of organ morphology showed damage to salivary glands
and ovaries in adult female R. appendiculatus that fed on vaccinated ani-
mals.

The protein 64TRP (recombinant forms of the R. appendiculatus tick
cement antigen 64 P) is expressed in tick salivary glands (Havlíková et
al., 2009) and seems to form part of the cement cone that anchors tick
mouth parts to the host skin, preventing the leakage of fluids and allow-
ing ticks to remain firmly attached to the host for several days (Fig. 1).
A protective immune response was induced in guinea pigs immunized
with recombinant 64TRP and challenged with nymphs and adults R. san-
guineus s.l. and I. ricinus (Trimnell et al., 2005). Importantly, seven of
the twenty-two surviving female ticks died after two days post-detach-
ment from vaccinated animals, presenting distention damage or rupture
in the midgut (Trimnell et al., 2005).

Ticks are exposed to large amounts of iron present in the blood meal
during feeding. Excessive amounts of iron can react with H2O2, gen-
erating hydroxyl radicals, a potent biological oxidant (Kumar, 2016).
Therefore, a balanced regulation of iron levels is essential for tick and
pathogen survival (Galay et al., 2014). The ferritin (FER) FER1 and
FER2 proteins act as the primary iron storage and transporter, respec-
tively, to produce reactive oxygen species (ROS) from iron (Ferrolho et
al., 2017; Galay et al., 2014). Ferritins may also contribute to nutri-
tional immunity by depriving pathogens of their essential iron supply.
Interestingly, FER2 is expressed in all tick stages. The FER2 silencing by
RNAi affects tick physiological processes, such as blood acquisition and
reproduction (Hajdusek et al., 2009), in addition to larval hatching,
indicating the importance of FER2 as a promising vaccine strategy (Fer-
rolho et al., 2017). In fact, the vaccine formulation using recombinant
ferritin 2 from I. ricinus (IrFER2) against I. ricinus, R. microplus, and R.
annulatus elicit an overall efficacy of 98 %, which was attributed to a
reduction in the number and weight of engorged female ticks and egg
fertility (Hajdusek et al., 2010).

Moreover, the tick subolesin (SUB) has been considered another
promising antigen in vaccine formulation (Fig. 1). SUB is an ortholog
of insect and vertebrate akirins (AKR) protein, which is involved in
gene-expression regulation (Canales et al., 2009; Goto et al., 2004;
Vincent-Johnson et al., 1997), and a highly conserved protein in-
volved in modulating feeding and reproduction with a protective ef-
fect against all tick developmental stages when used in recombinant
protein immunization (Domingos et al., 2013). This protein was si-
lenced by de la Fuente et al. (2006) through RNAi in Dermacentor
variabilis, leading to the degeneration of certain tick tissues, such as the
guts, salivary glands, reproductive tissues, and embryos. In different ex-
periments, vaccination with SUB provided control for hard (Ixodes spp.,
Rhipicephalus spp., Amblyomma americanum, D. variabilis) and soft (Or-
nithodoros spp.) ticks, mosquitoes (Aedes albopictus), sand flies (Caligus
rogercresseyi), and tick infections with A. phagocytophilum, A. marginale,
Babesia bigemina, and Borrelia burgdorferi sensu lato (Moreno-Cid et al.,
2013; Merino et al., 2011).

These findings suggest that vaccination reduces protein levels in
feeding ticks through an unknown mechanism, yet likely mediated by
antibody-antigen interactions in the cell cytoplasm (Merino et al.,
2011). SUB translocation to the nucleus was discovered where it func-
tions as a transcriptional regulator of its own expression and of genes
involved in various biological processes, playing an important role in
tick feeding, reproduction, and pathogen infection (de la Fuente et al.,
2011; de la Fuente and Merino, 2013). Moreover, the results of the
vaccine trial with recombinant A. albopictus AKR failed to demonstrate a
significant effect against R. sanguineus s.l. infestations in dogs (Canales
et al., 2009).

6. Future trial trends involving new vaccine antigens against dog
ticks

The discovery driven approach to identifying tick protective anti-
gens results in a large number of candidate antigens that require fur-
ther screening using platforms capable of finding the best vaccine can-
didates (de la Fuente and Merino, 2013; Kotsyfakis et al., 2015).
Such screening platforms include protein fractionation and testing in
vaccinated hosts (Sonenshine, 2006), expression library immunization
(Almazán et al., 2005), suppression subtractive hybridization (de la
Fuente et al., 2007, 2017), microarray hybridization (Maritz-Olivier
et al., 2012), in vitro tick feeding systems (Almazán et al., 2005;
Gonsioroski et al., 2012), and RNAi (Almazán et al., 2010; Barnard
et al., 2012; Mulenga et al., 2013). However, this methodologi-
cal approach to protective antigen screening is onerous, costly, and
time consuming and does not take advantage of recently developed
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omics technologies (de la Fuente and Merino, 2013). A systems
biology approach, using omics datasets, has revealed that tick-borne
pathogen infection induces transcriptional reprogramming that affects a
number of metabolic pathways in ticks, facilitating infection, multiplica-
tion, and transmission (de la Fuente and Merino, 2013). These results
suggest that the response of tick cells to tick-borne pathogens is associ-
ated with tolerance to infection (Cabezas-Cruz et al., 2019).

Expression library immunization was used for the discovery of the
candidate tick protective antigen Subolesin in a mouse model of I. scapu-
laris infestations (Merino et al., 2011), but it requires the use of ani-
mal models, such as mice, in which DNA immunization is effective, and
supports tick infestations in a reproducible way. Suppression subtractive
hybridization has been used for the study of tick–pathogen interactions
and the selection of candidate tick protective antigens (Antunes et al.,
2012; de la Fuente et al., 2007; Kocan et al., 2009).

RNAi may also allow for the characterization of antigens that in-
terfere with pathogen development and transmission (Antunes et al.,
2012; de la Fuente et al., 2007; Kocan et al., 2009). However, re-
cent studies have shown that RNAi screening alone may not result in the
selection of good tick protective antigens (Almazán et al., 2010; Pru-
dencio et al., 2010). One possibility that has been tested is the combi-
nation of RNAi and in vitro tick feeding as an algorithm to improve the
identification of tick protective antigens (de la Fuente and Merino,
2013). RNAi allows screening of a relatively large number of genes in-
volved in tick–pathogen or tick–host interactions, whereas in vitro feed-
ing with antibodies against selected candidate antigens should provide
results resembling closer vaccine protective capacity. Nonetheless, lim-
itations of in vitro tick feeding systems, such as differences in pathogen
infection between in vivo and in vitro tick feeding, should be considered
(Kocan et al., 2007).

Even after effective selection of candidate protective antigens, some
antigens could fail to protect hosts because they may be expressed
at low levels or be inaccessible to host antibodies. Additionally, ticks
have evolved mechanisms to counteract the effect of host immune re-
sponse, particularly for exposed antigens. These mechanisms may in-
clude the evolution of immunosuppressive molecules secreted during
tick feeding and multigene families with redundant biological functions
(Menten-Dedoyart et al., 2011; Ribeiro and Francischetti, 2003).
Taken together, these results stress the need to conduct vaccination tri-
als in the target host species to validate candidate tick protective anti-
gens. These studies are important to improving vaccine efficacy using
formulations and immunization schemes that accurately demonstrate
protective responses and through the combination of antigens with syn-
ergistic activity. Vaccine efficacy of the Bm86 (commercially available
vaccines) antigen correlates with antibody titers in cattle (de la Fuente
et al., 2007). Several candidate tick protective antigens, such as 64TRP,
Subolesin, and Ferritin 2, have been included in vaccination trials and
their function investigated (Hajdusek et al., 2009; Havlíková et al.,
2009; Merino et al., 2011; Trimnell et al., 2005). Although the pro-
tection mechanisms elicited by these antigens are likely mediated by
vaccine-induced antibodies (Hajdusek et al., 2010; Merino et al.,
2011), additional analysis is required to fully understand how they pro-
tect against tick infestations and pathogen infection (de la Fuente and
Merino, 2013; Hajdusek et al., 2010; Trimnell et al., 2005).

However, the specificity of tick-pathogen interactions resulting in
productive infection is not yet completely understood. The presence
of pathogen-specific tick receptors affects vector competence for these
pathogens, but other mechanisms could be involved in this process.
Identifying the molecular drivers that facilitate tick survival, spread,
and pathogen transmission provides an opportunity to disrupt these
processes and could lead to a reduction in tick burden and prevalence of
tick-borne diseases (de la Fuente et al., 2017).

Overall, the combination of distinct approaches, such as vaccine
antigens and acaricides interventions, could result in a more effective

and environmentally friendly control of tick populations (de la Fuente
et al., 2016).

7. Perspectives and conclusions

Tick infestation remains a serious impediment with problems associ-
ated with the widespread use of chemical acaricides, calling for alterna-
tive interventions, particularly vaccines. Whereas the rate of tick anti-
gens identification has accelerated over the past 20 years, an effective
anti-tick vaccine is far from reaching the veterinary market.

The global market for insecticidal/acaricidal and repellent com-
pounds is immense and growing. For example, the repellent market in
2016 had an estimated value of US$ 3.2 billion and was projected to
reach US$ 5 billion by 2022 (Statista, 2019). In fact, the stimulus pro-
vided by industry to sustain the acaricide manufacturers obstructs vac-
cine funding for controlling ticks. Moreover, there is a consensus that an
effective approach to developing effective tick control is associated with
combined control measures, including immunization and acaricides (de
la Fuente and Estrada-Peña, 2019). Taking into account that the
identification of high performance vaccinal antigens against dog ticks is
not available, the vaccinal approach should be considered as an alterna-
tive and complementary intervention, ultimately reducing the use of in-
secticides/acaricides while raising the demand for vaccines. In addition,
cost-effective vaccines and safety are important factors as they are of-
ten expensive in the veterinary market. To address these issues, research
should be focused on developing effective formulations with new adju-
vants for antigens-based vaccine delivery (Dar et al., 2019; Contreras
et al., 2019). Furthermore, having dog owners worldwide insist on hav-
ing access to products with a low environmental impact could provide
the veterinary medicine industry with the stimulus it needs to develop
new control measures against ticks using fewer acaricide products.

The number and categories of antigens with a potential for protect-
ing against tick infestation is rising, with a good number of these mole-
cules demonstrating strong reactivity (Fatmi et al., 2017). Developing
safe, affordable vaccine alternatives will improve the chances of reach-
ing a point of broad distribution and effective vaccine coverage.

Although significant advances have been made, further research in
tick vaccinology is needed to prove the efficacy of different antigen can-
didates in dogs. The studies described here have suggested that vaccines
possess various biological actions at different stages of the life cycle and
may have a therapeutic potential to prevent many diseases. Meanwhile,
integrated control of disease vectors using anti-tick vaccines to reduce
the volume and frequency of acaricide application remains a practical
and sustainable approach to tick-borne disease management as we inch
towards a fully effective vaccine.

Although vaccines are among the crowning achievements in medi-
cine, the limiting step in the development of vector vaccines has been
the identification of new antigens that induce protective immune re-
sponses while preventing pathogen transmission (de la Fuente and
Kocan, 2003). Furthermore, when developing new and effective vac-
cines against ticks, the antigen combinations may target multiple ec-
toparasite species in different hosts. However, the antigen structure and/
or immunological interactions may interfere with and reduce vaccine
immunogenicity and efficacy. Therefore, new formulations should con-
sider these factors and the possibility of combining protective epitopes
from different proteins into a single antigen to produce a multi-anti-
genic chimeric protein (e.g., Subolesin/Akirin chimeras). Additionally,
antigens effective against multiple ectoparasitic species in different hosts
ought to be considered, alone or in combination with other antigens.

The combined use of several technologies may be the most effective
way of identifying vaccine candidates by focusing on biochemical path-
ways that are functionally important for tick feeding, development and
reproduction, and pathogen infection and transmission.
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Moreover, tick vaccine development has proven to be feasible; re-
cent studies have reported important vector control results based on the
induction of host immune responses (Pereira-Filho et al., 2020; Ro-
drigues-Alves et al., 2020; Graciano et al., 2019; Gonçalves et al.,
2019), which probably will be the next frontier in vaccinology for vec-
tor-borne diseases controls in human and veterinary medicine.
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